
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

AirfoilPrep.py Documentation
Release 0.1.0
S.A. Ning

Technical Report
NREL/TP-5000-58817
September 2013

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

AirfoilPrep.py Documentation
Release 0.1.0
S.A. Ning

Prepared under Task No. WE11.0341

Technical Report
NREL/TP-5000-58817
September 2013

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) photo by Pat Corkery, NREL 16416, photo from SunEdison, NREL 17423, photo by Pat Corkery, NREL
16560, photo by Dennis Schroeder, NREL 17613, photo by Dean Armstrong, NREL 17436, photo by Pat Corkery, NREL 17721.

 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

http://www.osti.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.aspx

Table of Contents

1 Introduction . 1

2 Installation . 2

3 Tutorial . 3
3.1 Command-Line Usage . 3

3.1.1 Stall Corrections . 3
3.1.2 Angle of Attack Extrapolation . 4
3.1.3 Blending . 5

3.2 Python Usage . 5

4 Module Documentation . 9
4.1 Polar Class . 9
4.2 Airfoil Class . 11

Bibliography . 15

iii
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

List of Figures

Figure 1. Lift and drag coefficient with 3-D stall corrections applied. 4

Figure 2. Airfoil data extrapolated to high angles of attack. 5

List of Tables

Table 1. Available flags for using AirfoilPrep.py in command-line mode. 3

iv
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

http:AirfoilPrep.py

1 Introduction

AirfoilPrep.py (pronounced Airfoil Preppy) provides functionality to preprocess aerodynamic airfoil data. Essen
tially, the module is an object oriented version of the AirfoilPrep spreadsheet with additional functionality and is
written in the Python language. The intent is to provide the functionality of the AirfoilPrep spreadsheet, but in an
easy-to-use format both for stand-alone preprocessing through scripting and for direct implementation within other
codes such as blade element momentum methods.

AirfoilPrep.py allows the user to read in two-dimensional (2-D) aerodynamic airfoil data (i.e., from wind tunnel
data or numerical simulation), apply three-dimensional (3-D) rotation corrections for wind turbine applications,
and extend the data to very large angles of attack. Airfoil data can also be blended together to define intermediate
sections between linearly lofted sections. Capabilities unique to the Python version include the ability to read and
write to AeroDyn format files directly. The only feature that is contained in the spreadsheet version but is currently
missing in AirfoilPrep.py, is handling of pitching moment coefficients.

This document discusses installation, usage, and documentation of the module. Because the theory is simplistic, only
a brief overview is provided in the documentation section with corresponding references that contain further detail.

1
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

http:AirfoilPrep.py
http:AirfoilPrep.py
http:AirfoilPrep.py

2 Installation

Prerequisites

NumPy

Download either AirfoilPrep.py-0.1.0.tar.gz or AirfoilPrep.py-0.1.0.zip and uncompress/unpack it.

If you are only going to use AirfoilPrep.py from the command-line for simple preprocessing, no installation is nec
essary. The airfoilprep.py file in the src directory can be copied to any location on your computer and used
directly. For convenience you may want to add the directory it is contained in to the system path. If you will use Air
foilPrep.py from within Python for more advanced preprocessing or for integration with other codes, AirfoilPrep.py
should be installed using:

$ python setup.py install

To verify that the installation was successful and to run all the unit tests:

$ python test/test_airfoilprep.py

An “OK” signifies that all the tests passed.

See module documentation for more details on usage within Python. To access an HTML version of this documenta
tion with improved formatting and links to the source code, open docs/index.html.

2
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

http:test/test_airfoilprep.py
http:setup.py
http:AirfoilPrep.py
http:foilPrep.py
http:airfoilprep.py
http:AirfoilPrep.py
http:AirfoilPrep.py-0.1.0.tar.gz

3 Tutorial

AirfoilPrep.py can be accessed either through the command line or through Python. The command-line interface
is the simplest but provides only a limited number of options. The Python interface is useful for more advanced
preprocessing and for integration with other codes.

3.1 Command-Line Usage
From the terminal, to see the options, invoke help:

$ python airfoilprep.py -h

When using the command-line options, all files must be AeroDyn formatted files. The command line provides three
main methods for working with files directly: 3-D stall corrections, high angle of attack extrapolation, and a blending
operation. In all cases, you first specify the name (and path if necessary) of the file you want to work with:

$ python airfoilprep.py airfoil.dat

The following optional arguments are available

Table 1. Available flags for using AirfoilPrep.py in command-line mode.

flag arguments description

-h display help

--stall3D r/R c/r tsr 3-D rotational corrections near stall

--extrap cdmax high angle of attack extrapolation

--blend other weight blend with other file using specified weight

--out outfile specify a different name for output file

--plot plot data (for diagnostic purposes) using matplotlib

--common output airfoil data using a common set of angles of attack

3.1.1 Stall Corrections

The first method available from the command line is --stall3D, which reads the file, applies rotational correc
tions, and then writes the data to a separate file. This argument must specify the parameters used for the correction
in the format --stall3D r/R c/r tsr, where r/R is the local radius normalized by the rotor radius, c/r is
the local chord normalized by the local radius, and tsr is the local tip-speed ratio. For example, if airfoil.dat
contained 2-D data with r/R=0.5, c/r=0.15, tsr=5.0, then we would apply rotational corrections to the airfoil
using:

$ python airfoilprep.py airfoil.dat --stall3D 0.5 0.15 5.0

By default the output file will append _3D to the name. In the above example, the output file would be airfoil_
3D.dat. However, this can be overriden with the --out option. To output to a file at /Users/Me/Airfoils/my_
new_airfoil.dat:

$ python airfoilprep.py airfoil.dat --stall3D 0.5 0.15 5.0 \
> --out /Users/Me/Airfoils/my_new_airfoil.dat

3
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

http:airfoilprep.py
http:airfoilprep.py
http:c/r=0.15
http:AirfoilPrep.py
http:airfoilprep.py
http:airfoilprep.py
http:AirfoilPrep.py

Optionally, you can also plot the results (matplotlib must be installed) with the --plot flag. For example,

$ python airfoilprep.py DU21_A17.dat --stall3D 0.2 0.3 5.0 --plot

displays Figure 1 (only one Reynolds number shown) along with producing the output file. AirfoilPrep.py can

Figure 1. Lift and drag coefficient with 3-D stall corrections applied.

utilize data for which every Reynolds number uses a different set of angles of attack. However, some codes need data
on a uniform grid of Reynolds number and angle of attack. To output the data on a common set of angles of attack,
use the --common flag.

$ python airfoilprep.py airfoil.dat --stall3D 0.5 0.15 5.0 --common

3.1.2 Angle of Attack Extrapolation

The second method available from the command line is --extrap, which reads the file, applies high angle of
attack extrapolations, and then writes the data to a separate file. This argument must specify the maximum drag
coefficient to use in the extrapolation across the full +/- 180-degree range --extrap cdmax. For example, if
airfoil_3D.dat contained 3D stall corrected data and cdmax=1.3, then we could extrapolate the airfoil using:

$ python airfoilprep.py airfoil_3D.dat --extrap 1.3

By default the output file will append _extrap to the name. In the above example, the output file would be airfoil_
3D_extrap.dat. However, this can also be overriden with the --out flag. The --common flag is also useful
here if a common set of angles of attack is needed.

The output can be plotted with the –plot flag. The command

$ python airfoilprep.py DU21_A17_3D.dat --extrap 1.3 --plot

displays Figure 2 (only one Reynolds number shown) along with producing the output file.

4
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

http:airfoilprep.py
http:airfoilprep.py
http:airfoilprep.py
http:AirfoilPrep.py
http:airfoilprep.py

Figure 2. Airfoil data extrapolated to high angles of attack.

3.1.3 Blending

The final capability accessible from the command line is blending of airfoils. This is invoked through --blend
filename weight, where filename is the name (and path if necessary) of a second file to blend with, and
weight is the weighting used in the blending. The weight ranges on a scale of 0 to 1 where 0 returns the first airfoil
and 1 the second airfoil. For example, the following command blends airfoil1.dat with airfoil2.dat with a weighting
of 0.3 (conceptually the new airfoil would equal 0.7*airfoil1.dat + 0.3*airfoil2.dat).

$ python airfoilprep.py airfoil1.dat --blend airfoil2.dat 0.3

By default, the output file appends the names of the two files with a ‘+’ sign, then appends the weighting us
ing ‘_blend’ and the value for the weight. In this example, the output file would be airfoil1+airfoil2_
blend0.3.dat. Just like the previous case, the name of the output file can be overridden by using the --out
flag. The --common flag is also useful here if a common set of angles of attack is needed. This data can also be
plotted, but only the blended airfoil data will be shown. Direct comparison to the original data is not always possible,
because the blend method allows for the specified airfoils to be defined at different Reynolds numbers. Blending first
occurs across Reynolds numbers and then across angle of attack.

3.2 Python Usage
The Python interface allows for more flexible usage or integration with other programs. Descriptions of the inter
faces for the classes contained in the module are contained in Module Documentation.

Airfoils can be created from AeroDyn formatted files,

from airfoilprep import Polar, Airfoil
import numpy as np

airfoil = Airfoil.initFromAerodynFile(’DU21_A17.dat’)

or they can be created directly from airfoil data.

first polar
Re = 7e6

5
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

http:airfoilprep.py

alpha = [-14.50, -12.01, -11.00, -9.98, -8.12, -7.62, -7.11, -6.60, -6.50,
-6.00, -5.50, -5.00, -4.50, -4.00, -3.50, -3.00, -2.50, -2.00, -1.50,
-1.00, -0.50, 0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00,
4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.50, 8.00, 8.50, 9.00, 9.50,
10.00, 10.50, 11.00, 11.50, 12.00, 12.50, 13.00, 13.50, 14.00, 14.50,
15.00, 15.50, 16.00, 16.50, 17.00, 17.50, 18.00, 18.50, 19.00, 19.50,
20.00, 20.50]

cl = [-1.050, -0.953, -0.900, -0.827, -0.536, -0.467, -0.393, -0.323, -0.311,
-0.245, -0.178, -0.113, -0.048, 0.016, 0.080, 0.145, 0.208, 0.270, 0.333,
0.396, 0.458, 0.521, 0.583, 0.645, 0.706, 0.768, 0.828, 0.888, 0.948,
0.996, 1.046, 1.095, 1.145, 1.192, 1.239, 1.283, 1.324, 1.358, 1.385,
1.403, 1.401, 1.358, 1.313, 1.287, 1.274, 1.272, 1.273, 1.273, 1.273,
1.272, 1.273, 1.275, 1.281, 1.284, 1.296, 1.306, 1.308, 1.308, 1.308,
1.308, 1.307, 1.311, 1.325]

cd = [0.0567, 0.0271, 0.0303, 0.0287, 0.0124, 0.0109, 0.0092, 0.0083, 0.0089,
0.0082, 0.0074, 0.0069, 0.0065, 0.0063, 0.0061, 0.0058, 0.0057, 0.0057,
0.0057, 0.0057, 0.0057, 0.0057, 0.0057, 0.0058, 0.0058, 0.0059, 0.0061,
0.0063, 0.0066, 0.0071, 0.0079, 0.0090, 0.0103, 0.0113, 0.0122, 0.0131,
0.0139, 0.0147, 0.0158, 0.0181, 0.0211, 0.0255, 0.0301, 0.0347, 0.0401,
0.0468, 0.0545, 0.0633, 0.0722, 0.0806, 0.0900, 0.0987, 0.1075, 0.1170,
0.1270, 0.1368, 0.1464, 0.1562, 0.1664, 0.1770, 0.1878, 0.1987, 0.2100]

p1 = Polar(Re, alpha, cl, cd)

second polar
Re = 9e6
alpha = [-14.24, -13.24, -12.22, -11.22, -10.19, -9.70, -9.18, -8.18, -7.19,

-6.65, -6.13, -6.00, -5.50, -5.00, -4.50, -4.00, -3.50, -3.00, -2.50,
-2.00, -1.50, -1.00, -0.50, 0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00,
3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.50, 8.00, 9.00,
9.50, 10.00, 10.50, 11.00, 11.50, 12.00, 12.50, 13.00, 13.50, 14.00,
14.50, 15.00, 15.50, 16.00, 16.50, 17.00, 17.50, 18.00, 18.50, 19.00]

cl = [-1.229, -1.148, -1.052, -0.965, -0.867, -0.822, -0.769, -0.756, -0.690,
-0.616, -0.542, -0.525, -0.451, -0.382, -0.314, -0.251, -0.189, -0.120,
-0.051, 0.017, 0.085, 0.152, 0.219, 0.288, 0.354, 0.421, 0.487, 0.554,
0.619, 0.685, 0.749, 0.815, 0.879, 0.944, 1.008, 1.072, 1.135, 1.197,
1.256, 1.305, 1.390, 1.424, 1.458, 1.488, 1.512, 1.533, 1.549, 1.558,
1.470, 1.398, 1.354, 1.336, 1.333, 1.326, 1.329, 1.326, 1.321, 1.331,
1.333, 1.340, 1.362]

cd = [0.1461, 0.1263, 0.1051, 0.0886, 0.0740, 0.0684, 0.0605, 0.0270, 0.0180,
0.0166, 0.0152, 0.0117, 0.0105, 0.0097, 0.0092, 0.0091, 0.0089, 0.0089,
0.0088, 0.0088, 0.0088, 0.0088, 0.0088, 0.0087, 0.0087, 0.0088, 0.0089,
0.0090, 0.0091, 0.0092, 0.0093, 0.0095, 0.0096, 0.0097, 0.0099, 0.0101,
0.0103, 0.0107, 0.0112, 0.0125, 0.0155, 0.0171, 0.0192, 0.0219, 0.0255,
0.0307, 0.0370, 0.0452, 0.0630, 0.0784, 0.0931, 0.1081, 0.1239, 0.1415,
0.1592, 0.1743, 0.1903, 0.2044, 0.2186, 0.2324, 0.2455]

p2 = Polar(Re, alpha, cl, cd)

create airfoil object (can contain as many polars as desired)
af = Airfoil([p1, p2])

Blending is easily accomplished just like in the command-line interface. There is no requirement that the two airfoils
share a common set of angles of attack.

6
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

airfoil1 = Airfoil.initFromAerodynFile(’DU21_A17.dat’)
airfoil2 = Airfoil.initFromAerodynFile(’DU25_A17.dat’)

blend the two airfoils
airfoil_blend = airfoil1.blend(airfoil2, 0.3)

Applying 3-D corrections and high alpha extensions directly in Python, allows for a few additional options as com
pared to the command-line version. The following example performs the same 3-D correction as in the command-
line version, followed by an alternative 3-D correction that utilizes some of the optional inputs. See correction3D
for more details on the optional parameters.

r_over_R = 0.5
chord_over_r = 0.15
tsr = 5.0

3D stall correction
af3D_ex1 = af.correction3D(r_over_R, chord_over_r, tsr)

a second example using the optional inputs
alpha_max_corr = 25 # apply full rotational correction only up to this angle of attack
alpha_linear_min = -3 # angle of attack to start evaluating slope of linear region
alpha_linear_max = 7 # angle of attack to stop evaluating slope of linear region

af3D_ex2 = af.correction3D(r_over_R, chord_over_r, tsr,
alpha_max_corr=alpha_max_corr,
alpha_linear_min=alpha_linear_min,
alpha_linear_max=alpha_linear_max)

The airfoil data can be extended to high angles of attack using the extrapolate method. Just like the previous
method, a few optional parameters are available through the Python interface. The following example performs the
same extrapolation as in the command-line version, followed by an alternative extrapolation that utilizes some of the
optional inputs.

cdmax = 1.3

compute a 3D corrected and extended airfoil
af_extrap1 = af.extrapolate(cdmax)

a second example using the optional inputs
AR = 17 # blade aspect ratio. If provided, cdmax is estimated using the aspect ratio.
cdmin = 0.001 # minimum drag coefficient. Viterna’s method can occasionally produce

negative drag coefficients. A minimum is used to prevent unphysical data.
The passed in value is used to override the default.

af_extrap2 = af.extrapolate(cdmax, AR=AR, cdmin=cdmin)

Some codes need to use the same set of angles of attack data for every Reynolds number defined in the airfoil. The
following example performs the same method as in the command-line version followed by an alternate approach
where the user can specify the set of angles of attack to use.

create new airfoil that uses the same angles of attack at each Reynolds number
af_common1 = af.interpToCommonAlpha()

default approach uses a union of all defined angles of attack
alternatively, specify the exact angles to use

7
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

alpha = np.arange(-180, 180)
af_common2 = af.interpToCommonAlpha(alpha)

For direct access to the underlying data in a grid format (if not already a grid, it is interpolated to a grid first), use the
createDataGrid method as follows:

extract a data grid from airfoil
alpha, Re, cl, cd = af.createDataGrid()

cl[i, j] is the lift coefficient for alpha[i] and Re[j]

Finally, writing AeroDyn formatted files is straightforward.

af.writeToAerodynFile(’output.dat’)

8
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

4 Module Documentation

Two classes are provided in the module: Polar and Airfoil. Generally, the Polar class is not needed for direct usage
except for its constructor. All objects in this module are immutable. In other words, calling Airfoil.correct3D()
creates a new modified airfoil object rather than editing the existing object.

This PDF version of the documentation only provides an summary of the classes and methods. Further details are
found in the HTML version of this documentation, complete with hyperlinks to the source code.

4.1 Polar Class
A Polar object is meant to represent the variation in lift, drag, and pitching moment coefficient with angle of attack
at a fixed Reynolds number. Generally, the methods of this class do not need to be used directly (other than the
constructor), but rather are used by the Airfoil class.

Class Summary:

class airfoilprep.Polar(Re, alpha, cl, cd)
Constructor

Parameters
Re : float

Reynolds number

alpha : ndarray (deg)

angle of attack

cl : ndarray

lift coefficient

cd : ndarray

drag coefficient

blend(other, weight)
Blend this polar with another one with the specified weighting

Parameters
other : Polar

another Polar object to blend with

weight : float

blending parameter between 0 and 1. 0 returns self, whereas 1 returns other.

Returns
polar : Polar

a blended Polar

correction3D(r_over_R, chord_over_r, tsr, alpha_max_corr=30, alpha_linear_min=-5, alpha_
linear_max=5)

Applies 3-D corrections for rotating sections from the 2-D data.

9
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

Parameters
r_over_R : float

local radial position / rotor radius

chord_over_r : float

local chord length / local radial location

tsr : float

tip-speed ratio

alpha_max_corr : float, optional (deg)

maximum angle of attack to apply full correction

alpha_linear_min : float, optional (deg)

angle of attack where linear portion of lift curve slope begins

alpha_linear_max : float, optional (deg)

angle of attack where linear portion of lift curve slope ends

Returns
polar : Polar

A new Polar object corrected for 3-D effects

Notes

The Du-Selig method (Du and Selig, 1998) is used to correct lift, and the Eggers method (Eggers Jr et al.,
2003) is used to correct drag.

extrapolate(cdmax, AR=None, cdmin=0.001, nalpha=15)
Extrapolates force coefficients up to +/- 180 degrees using Viterna’s method (Viterna and Janetzke,
1982).

Parameters
cdmax : float

maximum drag coefficient

AR : float, optional

aspect ratio = (rotor radius / chord_75% radius) if provided, cdmax is computed from
AR

cdmin: float, optional :

minimum drag coefficient. used to prevent negative values that can sometimes occur
with this extrapolation method

nalpha: int, optional :

number of points to add in each segment of Viterna method

Returns
polar : Polar

a new Polar object

10
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

Notes

If the current polar already supplies data beyond 90 degrees then this method cannot be used in its cur
rent form and will just return itself.

If AR is provided, then the maximum drag coefficient is estimated as

>>> cdmax = 1.11 + 0.018
*

AR

unsteadyparam(alpha_linear_min=-5, alpha_linear_max=5)
compute unsteady aero parameters used in AeroDyn input file

Parameters
alpha_linear_min : float, optional (deg)

angle of attack where linear portion of lift curve slope begins

alpha_linear_max : float, optional (deg)

angle of attack where linear portion of lift curve slope ends

Returns
aerodynParam : tuple of floats

(control setting, stall angle, alpha for 0 cn, cn slope, cn at stall+, cn at stall-, alpha for
min CD, min(CD))

4.2 Airfoil Class
An Airfoil object encapsulates the aerodynamic forces/moments of an airfoil as a function of angle of attack and
Reynolds number. For wind turbine analysis, this class provides capabilities to apply 3-D rotational corrections to
2-D data using the Du-Selig method (Du and Selig, 1998) for lift, and the Eggers method (Eggers Jr et al., 2003) for
drag. Airfoil data can also be extrapolated to +/-180 degrees, using Viterna’s method (Viterna and Janetzke, 1982).
This class also adds methods to read and write AeroDyn airfoil files directly.

Class Summary:

class airfoilprep.Airfoil(polars)
Constructor

Parameters
polars : list(Polar)

list of Polar objects

blend(other, weight)
Blend this Airfoil with another one with the specified weighting.

Parameters
other : Airfoil

other airfoil to blend with

weight : float

blending parameter between 0 and 1. 0 returns self, whereas 1 returns other.

11
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

Returns
obj : Airfoil

a blended Airfoil object

Notes

First finds the unique Reynolds numbers. Evaluates both sets of polars at each of the Reynolds numbers,
then blends at each Reynolds number.

correction3D(r_over_R, chord_over_r, tsr, alpha_max_corr=30, alpha_linear_min=-5, alpha_
linear_max=5)

apply 3-D rotational corrections to each polar in airfoil

Parameters
r_over_R : float

radial position / rotor radius

chord_over_r : float

local chord / local radius

tsr : float

tip-speed ratio

alpha_max_corr : float, optional (deg)

maximum angle of attack to apply full correction

alpha_linear_min : float, optional (deg)

angle of attack where linear portion of lift curve slope begins

alpha_linear_max : float, optional (deg)

angle of attack where linear portion of lift curve slope ends

Returns
airfoil : Airfoil

airfoil with 3-D corrections

See Also:

Polar.correction3D
apply 3-D corrections for a Polar

createDataGrid()
interpolate airfoil data onto uniform alpha-Re grid.

Returns
alpha : ndarray (deg)

a common set of angles of attack (union of all polars)

Re : ndarray

all Reynolds numbers defined in the polars

cl : ndarray

12
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

lift coefficient 2-D array with shape (alpha.size, Re.size) cl[i, j] is the lift coefficient at
alpha[i] and Re[j]

cd : ndarray

drag coefficient 2-D array with shape (alpha.size, Re.size) cd[i, j] is the drag coeffi
cient at alpha[i] and Re[j]

extrapolate(cdmax, AR=None, cdmin=0.001)
apply high alpha extensions to each polar in airfoil

Parameters
cdmax : float

maximum drag coefficient

AR : float, optional

blade aspect ratio (rotor radius / chord at 75% radius). if included it is used to estimate
cdmax

cdmin: minimum drag coefficient :

Returns
airfoil : Airfoil

airfoil with +/-180 degree extensions

See Also:

Polar.extrapolate
extrapolate a Polar to high angles of attack

getPolar(Re)
Gets a Polar object for this airfoil at the specified Reynolds number.

Parameters
Re : float

Reynolds number

Returns
obj : Polar

a Polar object

Notes

Interpolates as necessary. If Reynolds number is larger than or smaller than the stored Polars, it returns
the Polar with the closest Reynolds number.

classmethod initFromAerodynFile(aerodynFile)
Construct Airfoil object from AeroDyn file

Parameters
aerodynFile : str

path/name of a properly formatted Aerodyn file

13
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

Returns
obj : Airfoil

interpToCommonAlpha(alpha=None)
Interpolates all polars to a common set of angles of attack

Parameters
alpha : ndarray, optional

common set of angles of attack to use. If None a union of all angles of attack in the
polars is used.

writeToAerodynFile(filename)
Write the airfoil section data to a file using AeroDyn input file style.

Parameters
filename : str

name (+ relative path) of where to write file

14
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

Bibliography

Du, Z.; Selig, M. (Jan 1998). “A 3-D Stall-Delay Model for Horizontal Axis Wind Turbine Performance Prediction.”
1998 ASME Wind Energy Symposium. AIAA-1998-21.

Eggers Jr, A.J.; Chaney, K.; Digumarthi, R. (Jan 2003). “An Assessment of Approximate Modeling of Aerodynamic
Loads on the UAE Rotor.” Aerospace Sciences Meeting and Exhibit. AIAA-2003-0868.

Viterna, L.; Janetzke, D. (September 1982). Theoretical and Experimental Power from Large Horizontal-Axis Wind
Turbines. NASA TM-82944, National Aeronautics and Space Administration, Cleveland, OH. Lewis Research
Center.

15
This report is available at no cost from the
National Renewable Energy Laboratory (NREL)
at www.nrel.gov/publications.

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Installation
	3 Tutorial
	3.1 Command-Line Usage
	3.2 Python Usage

	4 Module Documentation
	4.1 Polar Class
	4.2 Airfoil Class

	Bibliography

